Decentralized RBFNN Type-2 Fuzzy Sliding Mode Controller for Robot Manipulator Driven by Artificial Muscles
نویسنده
چکیده
In the few last years, investigations in neural networks, fuzzy systems and their combinations become attractive research areas for modeling and controlling of uncertain systems. In this paper, we propose a new robust controller based on the integration of a Radial Base Function Neural Network (RBFNN) and an Interval Type‐2 Fuzzy Logic (IT2FLC) for robot manipulator actuated by pneumatic artificial muscles (PAM). The proposed approach was synthesized for each joint using Sliding Mode Control (SMC) and named Radial Base Function Neural Network Type‐2 Fuzzy Sliding Mode Control (RBFT2FSMC). Several objectives can be accomplished using this control scheme such as: avoiding difficult modeling, attenuating the chattering effect of the SMC, reducing the rules number of the fuzzy control, guaranteeing the stability and the robustness of the system, and finally handling the uncertainties of the system. The proposed control approach is synthesized and the stability of the robot using this controller was analyzed using Lyapunov theory. In order to demonstrate the efficiency of the RBFT2FSMC compared to other control technique, simulations experiments were performed using linear model with parameters uncertainties obtained after identification stage. Results show the superiority of the proposed approach compared to RBFNN Type‐1 Fuzzy SMC. Finally, an experimental study of the proposed approach was presented using 2‐ DOF robot.
منابع مشابه
Design On-Line Tunable Gain Artificial Nonlinear Controller
One of the most important challenges in nonlinear, multi-input multi-output (MIMO) and time variant systems (e.g., robot manipulator) is designing a controller with acceptable performance. This paper focused on design a new artificial non linear controller with on line tunable gain applied in the robot manipulator. The sliding mode fuzzy controller (SMFC) was designed as 7 rules Mamdani’s infer...
متن کاملDesign On-Line Tunable Gain Artificial Nonlinear Controller
One of the most important challenges in nonlinear, multi-input multi-output (MIMO) and time variant systems (e.g., robot manipulator) is designing a controller with acceptable performance. This paper focused on design a new artificial non linear controller with on line tunable gain applied in the robot manipulator. The sliding mode fuzzy controller (SMFC) was designed as 7 rules Mamdani’s infer...
متن کاملEliminating chattering phenomenon in sliding mode control of robot manipulators in the joint space using fuzzy logic
In industrial robotic manipulator, due to the presence of quite nonlinear dynamic and structural and nonstructural uncertainties, a precise model is not easily obtained. As a result, designing a controller with a suitable function based on system model is a challenging issue. Sliding mode control is a robust control with numerous applications which can overcome the aforementioned uncertainties....
متن کاملRobot trajectory Tracking with Adaptive RBFNN-Based fuzzy sliding Mode Control
Due to computational burden and dynamic uncertainty, the classical model-based control approaches are hard to be implemented in the multivariable robotic systems. In this paper, a model-free fuzzy sliding mode control based on neural network is proposed. In classical sliding mode controllers, system dynamics and system parameters are required to compute the equivalent control. In Radial Basis F...
متن کاملAdaptive RBF network control for robot manipulators
TThe uncertainty estimation and compensation are challenging problems for the robust control of robot manipulators which are complex systems. This paper presents a novel decentralized model-free robust controller for electrically driven robot manipulators. As a novelty, the proposed controller employs a simple Gaussian Radial-Basis-Function Network as an uncertainty estimator. The proposed netw...
متن کامل